

Genomic Evolutionary Comparison of Biofilm Forming Streptomyces species Living in Different Geological Habitats

Research Goals

- To determine the evolutionary similarity of *Streptomyces* that live in different geological habitats around the world.
- To compare the conservation of specific genes that are responsible for biofilm formation to the whole genome of that species.

Background Information

- *Streptomyces* are Gram-positive, aerobic, filamentous, spore and biofilm forming bacteria within the class of Actinobacteria.¹
- In bacteria, chemical communication involves producing, releasing, detecting, and responding to small signal molecules which are termed autoinducers.²
- The information supplied by these molecules is critical for synchronizing and organizing the activity of a large group of cells.³
- Examples of bacterial communication include bioluminescence and biofilm formation.
- Acetate Na⁺-dependent symporter proteins are necessary for biofilm formation.⁴
- Volatiles are small air-transmittable chemicals with diverse biological functions.
- A specific volatile, acetic acid, plays a central role in the formation of biofilms.⁵

Matthew Hanks Supervisor: Dr. Naowarat Cheeptham

Methodology	
 Conduct literature research on different Streptomyces species and determine their environmental habitats. 	
Determine specific genes and proteins that are integral in the formation of bacterial biofilms.	
 Isolate one specific gene and protein in each Streptomyces species that is responsible for biofilm formation. 	
4. Compare the nucleotide sequence of the <i>Streptomyces</i> species whole genome to each other.	
Compare the nucleotide sequence for the biofilm formation gene with each other and the amino acid sequence for the biofilm formation protein to each other.	1
 Use bioinformatic tools and software such as NCBI Blast, DIVERGE 3.0, and MEGA11 for analysis. 	
Results	
Whole Genome Streptomyces Shotgun Sequences Streptomyces Streptomyces Streptomyces sp. ICC1	
Streptomyces sp. ICC4 Streptomyces abyssalis	C
Streptomyces tirandamycinic	us
Streptomyces cocklensis	
Figure 2. Phylogenetic tree showing full genome similarity of <i>Streptomyce</i> species.	25
Whole Genome Based on Growth Environment Soil (Germany) Cave Rock (Canada)	
Cave Rock (Canada)	
Deep Sea Sediment (Chir	ıa) •
Marine Sponge (China)	•
Hay Meadow Soil (UK)	•
Figure 3. Phylogenetic tree of the species of Figure 2 showing geological habitats of each species	•

Description	Scientific Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
acetate Na+-dependent symporter subunit involved in volatile signal for biofilm formation [Streptomyces cock	. <u>Streptomyces c</u>	1073	1073	100%	0.0	100.00%	554	CAG6392864.1
cation acetate symporter [Streptomyces cocklensis]	Streptomyces c	1062	1062	99%	0.0	100.00%	549	WP_251488157.1
cation acetate symporter [Streptomyces tricolor] cation acetate symporter [Streptomyces abyssalis]	Streptomyces tri Streptomyces a	760 660	760 660	96% 97%	0.0 0.0	78.81% 74.77%		<u>WP_086700524.1</u> <u>WP_070010570.1</u>
cation acetate symporter [Streptomyces sp. ICC4]	Streptomyces s	629	629	96%	0.0	64.37%	546	<u>AWZ10414.1</u>
cation acetate symporter [Streptomyces tirandamycinicus]	Streptomyces tir	321	321	93%	3e-103	40.08%	539	WP_108907898.1
cation acetate symporter [Streptomyces sp. ICC1]	Streptomyces s	147	147	86%	9e-38	30.98%	603	WP_112450370.1

Figure 4. Sample blast search result comparing the variable region of the targeted protein in *Streptomyces cocklensis* to other *Streptomyces* species.

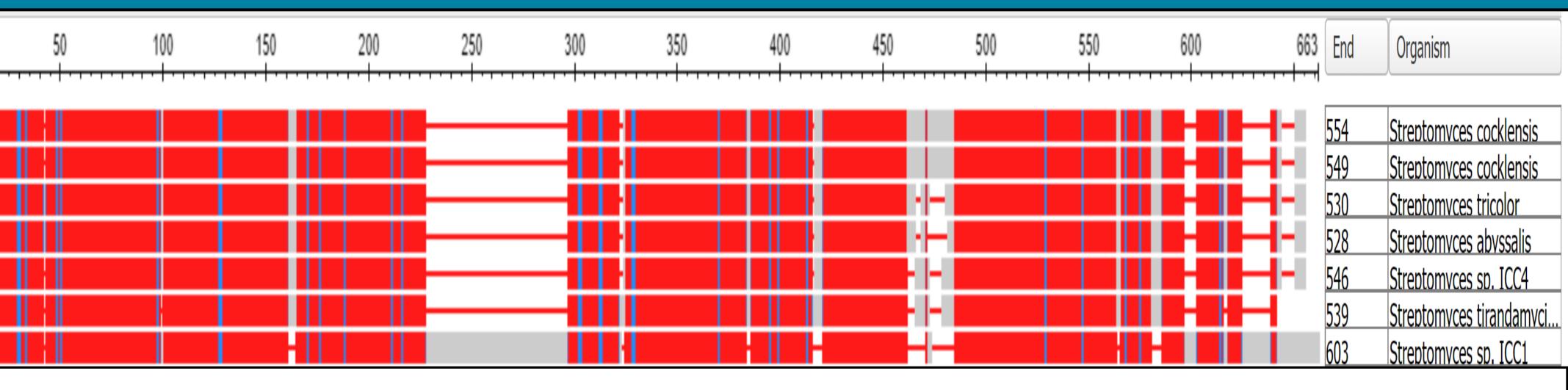
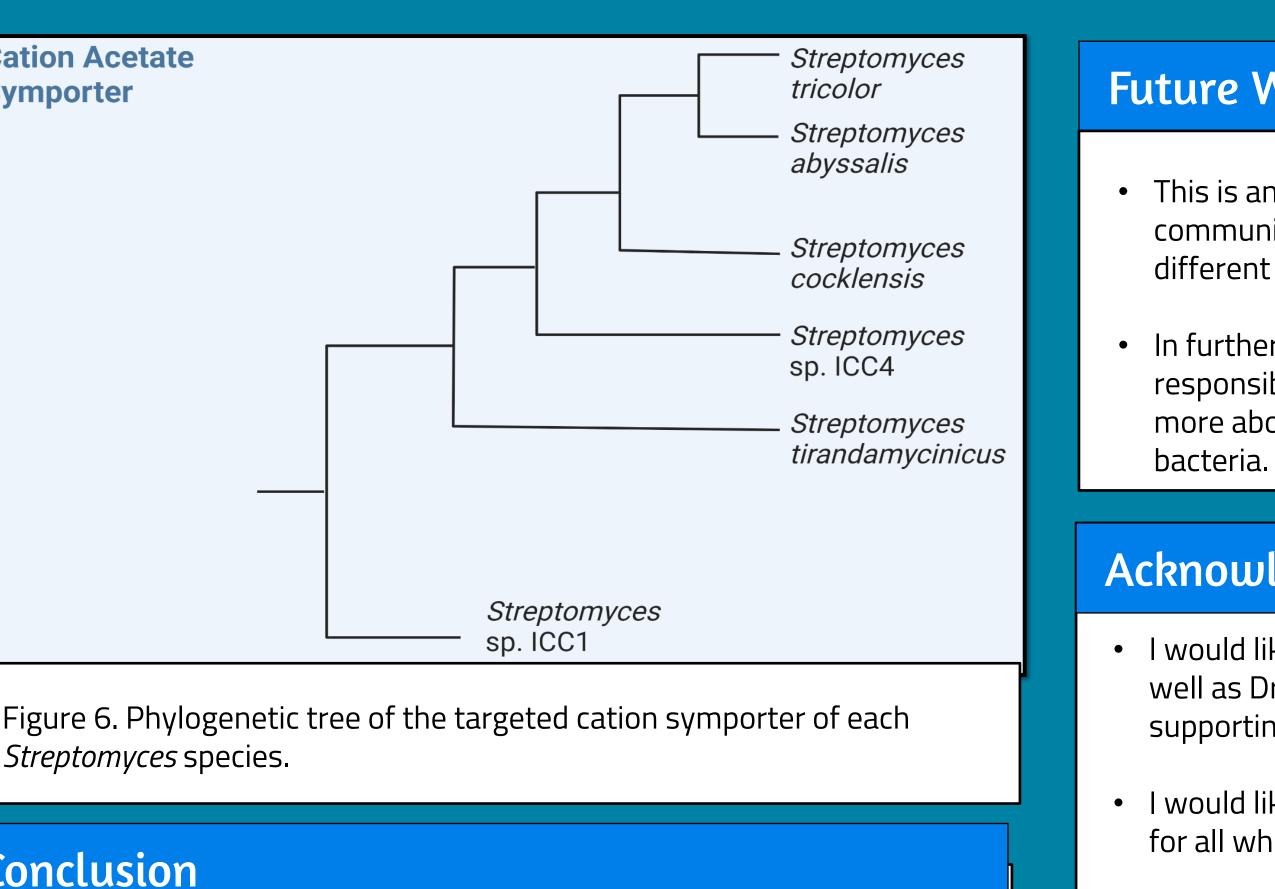



Figure 5. The genes coding for the targeted protein from different *Streptomyces* species in alignment view to show similarities and differences.

Research suggests that acetate Na⁺-dependent symporter proteins are necessary for biofilm formation.

- The gene coding for this protein has conserved and variable regions.
- The similarity variable region of this gene does not appear to be correlated with the geological habitat and shows large variation between species.
- The similarity of the full genome of different *Streptomyces* species also does not appear to be correlated to the geological habitat or location the sample was taken from.

THOMPSON **RIVERS** JNIVERSITY

Future Work

• This is an introduction bacterial cognition, and the concept cell communication is a critical factor in the diverse behaviors found in different bacteria.

• In further research, identifying and labeling the genes that are responsible for different bacterial behaviors would allow us to learn more about the ecological function, adaptation, and evolution of

Acknowledgements

• I would like to thank my supervisor Dr. Naowarat Cheeptham (Ann) as well as Dr. Jessica Thandara-Gosse from the University of Ottawa for supporting my research.

• I would like to acknowledge that the NCBI databases were consulted for all whole genome sequences as well as the protein sequences.

• I would also like acknowledge that the bioinformatic software NCBI Blast, DIVERGE 3.0, and MEGA11 were used in the analysis of this project

